Abstract
Associative knowledge networks are central in many areas of learning and teaching. One key problem in evaluating and exploring such networks is to find out its key items (nodes), sub-structures (connected set of nodes), and how the roles of sub-structures can be compared. In this study, we suggest an approach for analyzing associative networks, so that analysis is based on spreading activation and systemic states that correpond to the state of spreading. The method is based on the construction of diffusion-propagators as generalized systemic states of the network, for an exploration of the connectivity of a network and, subsequently, on generalized Jensen–Shannon–Tsallis relative entropy (based on Tsallis-entropy) in order to compare the states. It is shown that the constructed systemic states provide a robust way to compare roles of sub-networks in spreading activation. The viability of the method is demonstrated by applying it to recently published network representations of students’ associative knowledge regarding the history of science.
Subject
Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献