Super-Resolution Processing of Synchrotron CT Images for Automated Fibre Break Analysis of Unidirectional Composites

Author:

Karamov Radmir12ORCID,Breite Christian2ORCID,Lomov Stepan V.2ORCID,Sergeichev Ivan1ORCID,Swolfs Yentl2ORCID

Affiliation:

1. The Center Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia

2. Department of Materials Engineering, KU Leuven Kasteelpark Arenberg 44, 3001 Leuven, Belgium

Abstract

Fibre breaks govern the strength of unidirectional composite materials under tension. The progressive development of fibre breaks is studied using in situ X-ray computed tomography, especially with synchrotron radiation. However, even with synchrotron radiation, the resolution of the time-resolved in situ images is not sufficient for a fully automated analysis of continuous mechanical deformations. We therefore investigate the possibility of increasing the quality of low-resolution in situ scans by means of super-resolution (SR) using 3D deep learning techniques, thus facilitating the subsequent fibre break identification. We trained generative neural networks (GAN) on datasets of high—(0.3 μm) and low-resolution (1.6 μm) statically acquired images. These networks were then applied to a low-resolution (1.1 μm) noisy image of a continuously loaded specimen. The statistical parameters of the fibre breaks used for the comparison are the number of individual breaks and the number of 2-plets and 3-plets per specimen volume. The fully automated process achieves an average accuracy of 82% of manually identified fibre breaks, while the semi-automated one reaches 92%. The developed approach allows the use of faster, low-resolution in situ tomography without losing the quality of the identified physical parameters.

Funder

Skolkovo Institute of Science and Technology

Research Foundation - Flanders

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3