Toward improved image‐based root phenotyping: Handling temporal and cross‐site domain shifts in crop root segmentation models

Author:

Banet Travis1ORCID,Smith Abraham George2,McGrail Rebecca1ORCID,McNear David H.1,Poffenbarger Hanna1ORCID

Affiliation:

1. Department of Plant and Soil Sciences University of Kentucky Lexington Kentucky USA

2. Department of Computer Science University of Copenhagen Copenhagen Denmark

Abstract

AbstractCrop root segmentation models developed through deep learning have increased the throughput of in situ crop phenotyping studies. However, models trained to identify roots in one image dataset may not accurately identify roots in another dataset, especially when the new dataset contains known differences, called domain shifts. The objective of this study was to quantify how model performance changes when models are used to segment image datasets that contain domain shifts and evaluate approaches to reduce error associated with domain shifts. We collected maize root images at two growth stages (V7 and R2) in a field experiment and manually segmented images to measure total root length (TRL). We developed five segmentation models and evaluated each model's ability to handle a temporal (growth‐stage) domain shift. For the V7 growth stage, a growth‐stage‐specific model trained only on images captured at the V7 growth stage was best suited for measuring TRL. At the R2 growth stage, combining images from both growth stages into a single dataset to train a model resulted in the most accurate TRL measurements. We applied two of the field models to images from a greenhouse experiment to evaluate how model performance changed when exposed to a cross‐site domain shift. Field models were less accurate than models trained only on the greenhouse images even when crop growth stage was identical. Although models may perform well for one experiment, model error increases when applied to images from different experiments even when crop species, growth stage, and soil type are similar.

Funder

Novo Nordisk Fonden

National Institute of Food and Agriculture

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3