Structural and Biochemical Characterization of Silver/Copper Binding by Dendrorhynchus zhejiangensis Ferritin

Author:

Huo Chunheng123,Ming Tinghong123ORCID,Wu Yan134,Huan Hengshang134,Qiu Xiaoting4,Lu Chenyang123,Li Ye123,Zhang Zhen123,Han Jiaojiao123,Su Xiurong123ORCID

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China

2. School of Marine Science, Ningbo University, Ningbo 315832, China

3. Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China

4. College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China

Abstract

Ferritin with a highly symmetrical cage-like structure is not only key in the reversible storage of iron in efficient ferroxidase activity; it also provides unique coordination environments for the conjugation of heavy metal ions other than those associated with iron. However, research regarding the effect of these bound heavy metal ions on ferritin is scarce. In the present study, we prepared a marine invertebrate ferritin from Dendrorhynchus zhejiangensis (DzFer) and found that it could withstand extreme pH fluctuation. We then demonstrated its capacity to interact with Ag+ or Cu2+ ions using various biochemical and spectroscopic methods and X-ray crystallography. Structural and biochemical analyses revealed that both Ag+ and Cu2+ were able to bind to the DzFer cage via metal-coordination bonds and that their binding sites were mainly located inside the three-fold channel of DzFer. Furthermore, Ag+ was shown to have a higher selectivity for sulfur-containing amino acid residues and appeared to bind preferentially at the ferroxidase site of DzFer as compared with Cu2+. Thus, it is far more likely to inhibit the ferroxidase activity of DzFer. The results provide new insights into the effect of heavy metal ions on the iron-binding capacity of a marine invertebrate ferritin.

Funder

General project of Zhejiang Provincial Education Department

National Natural Science Foundation of China

K.C. Wong Magna Fund in Ningbo University.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3