Modification of Macromolecules of Polyimide Films by Electron Irradiation

Author:

Abdulkarimova Roza1,Muradov Abyl12,Mukashev Kanat12,Yar-Mukhamedova Gulmira1ORCID,Japashov Nursultan13

Affiliation:

1. Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71, Al-Farabi Ave., Almaty 050040, Kazakhstan

2. Research Centre “KazAlfaTech LTD”, Karasu Str., 41A, Almaty 050020, Kazakhstan

3. Faculty of Education and Humanities, Suleyman Demirel University, Almaty 040900, Kazakhstan

Abstract

New polymeric materials formation by controlling their properties is the primary and most challenging problem in developing a methodology for synthesizing a chosen technology and its use. The combined effect of high-energy electron radiation and tensile stress will cause a decrease in crystallinity and the breakage of chemical bonds in polyimide film macromolecules and is a new approach in their production technology. The effect of uniaxial tension and electron irradiation on the modification of polyimide film at room temperature was studied. Irradiation of the films caused an increase in the intensity of the IR spectrum by ~2–6 times and an increase in the width of the bands. The intensity in the range of 1700–3500 cm−1 increased, indicating an increase in the content of radicals as a result of irradiation. The amplitudes of the electron paramagnetic resonance signal from non-irradiated films increased from 3 × 103 to 5 × 103 as a result of uniaxial tension to fracture, indicating an increase in radicals in the material. The lines of the electron paramagnetic resonance spectrum shifted from 3475.0 cm−1 to 3512.5 cm−1, with a simultaneous decrease in the signal’s amplitude from 6 ×103 to 4 × 103, as a result of the electron irradiation of the films, followed by their subjection to tension. This was due to a decrease in the concentration of the radicals of the =N-H and –N-H2 groups until their disappearance and the formation of new ones.

Funder

Science Committee of Kazakhstan’s Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3