Abstract
The directed assembly of molecular building blocks into discrete supermolecules or extended supramolecular networks through noncovalent intermolecular interactions is an ongoing challenge in chemistry. This challenge may be overcome by establishing a hierarchy of intermolecular interactions that, in turn, may facilitate the edification of supramolecular assemblies. As noncovalent interactions can be used to accelerate the reaction rates and/or to increase their selectivity, the development of efficient and practical catalytic systems, using supramolecular chemistry, has been achieved during the last few decades. However, between discrete and extended supramolecular assemblies, the newly developed “colloidal tectonics” concept allows us to link the molecular and macroscopic scales through the structured engineering of colloidal structures that can be applied to the design of predictable, versatile, and switchable catalytic systems. The main cutting-edge strategies involving supramolecular chemistry and self-organization in catalysis will be discussed and compared in this review.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献