Synthesis of Alginate Nanoparticles Using Hydrolyzed and Enzyme-Digested Alginate Using the Ionic Gelation and Water-in-Oil Emulsion Method

Author:

Van Bavel Nicolas1ORCID,Lewrenz Anna-Marie1,Issler Travis1,Pang Liping2ORCID,Anikovskiy Max3ORCID,Prenner Elmar J.1ORCID

Affiliation:

1. Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada

2. Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand

3. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Alginate nanoparticles (AlgNPs) are attracting increasing interest for a range of applications because of their good biocompatibility and their ability to be functionalized. Alginate is an easily accessible biopolymer which is readily gelled by the addition of cations such as calcium, facilitating a cost-effective and efficient production of nanoparticles. In this study, AlgNPs based on acid hydrolyzed and enzyme-digested alginate were synthesized by using ionic gelation and water-in-oil emulsification, with the goal to optimize key parameters to produce small uniform (<200 nm) AlgNPs. By the ionic gelation method, such AlgNPs were obtained when sample concentrations were 0.095 mg/mL for alginate and CaCl2 in the range of 0.03–0.10 mg/mL. Alginate and CaCl2 concentrations > 0.10 mg/mL resulted in sizes > 200 nm with relatively high dispersity. Sonication in lieu of magnetic stirring proved to further reduce size and increase homogeneity of the nanoparticles. In the water-in-oil emulsification method, nanoparticle growth was confined to inverse micelles in an oil phase, resulting in lower dispersity. Both the ionic gelation and water-in-oil emulsification methods were suitable for producing small uniform AlgNPs that can be further functionalized as required for various applications.

Funder

New Zealand Ministry of Business, Innovation & Employment

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3