Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique

Author:

Šofer Michal,Šofer Pavel,Pagáč MarekORCID,Volodarskaja Anastasia,Babiuch MarekORCID,Gruň Filip

Abstract

The characterisation of failure mechanisms in carbon fibre-reinforced polymer (CFRP) materials using the acoustic emission (AE) technique has been the topic of a number of publications. However, it is often challenging to obtain comprehensive and reliable information about individual failure mechanisms. This situation was the impetus for elaborating a comprehensive overview that covers all failure mechanisms within the framework of CFRP materials. Thus, we performed tensile and compact tension tests on specimens with various stacking sequences to induce specific failure modes and mechanisms. The AE activity was monitored using two different wideband AE sensors and further analysed using a hybrid AE hit detection process. The datasets received from both sensors were separately subjected to clustering analysis using the spectral clustering technique, which incorporated an unsupervised k-means clustering algorithm. The failure mechanism analysis also included a proposed filtering process based on the power distribution across the considered frequency range, with which it was possible to distinguish between the fibre pull-out and fibre breakage mechanisms. This functionality was particularly useful in cases where it was evident that the above-mentioned damage mechanisms exhibited very similar parametric characteristics. The results of the clustering analysis were compared to those of the scanning electron microscopy analysis, which confirmed the conclusions of the AE data analysis.

Funder

Innovative and Additive Manufacturing Technology—New Technological Solutions for the 3D Printing of Metals and Composite Materials

European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project

the Ministry of Education, Youth, and Sports

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3