Conformational Parameters and Hydrodynamic Behavior of Poly(2-Methyl-2-Oxazoline) in a Broad Molar Mass Range

Author:

Gubarev Alexander S.1ORCID,Lezov Alexey A.1ORCID,Podsevalnikova Anna N.1,Mikusheva Nina G.1,Fetin Petr A.2ORCID,Zorin Ivan M.2,Aseyev Vladimir O.3ORCID,Sedlacek Ondrej4,Hoogenboom Richard4ORCID,Tsvetkov Nikolai V.1

Affiliation:

1. Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia

2. Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia

3. Department of Chemistry, University of Helsinki, Helsinki, P.O. Box 55, 00014 Helsinki, Finland

4. Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium

Abstract

In this work, we report our results on the hydrodynamic behavior of poly(2-methyl-2-oxazoline) (PMeOx). PMeOx is gaining significant attention for use as hydrophilic polymer in pharmaceutical carriers as an alternative for the commonly used poly(ethylene glycol) (PEG), for which antibodies are found in a significant fraction of the human population. The main focus of the current study is to determine the hydrodynamic characteristics of PMeOx under physiological conditions, which serves as basis for better understanding of the use of PMeOx in pharmaceutical applications. This goal was achieved by studying PMeOx solutions in phosphate-buffered saline (PBS) as a solvent at 37 °C. This study was performed based on two series of PMeOx samples; one series is synthesized by conventional living cationic ring-opening polymerization, which is limited by the maximum chain length that can be achieved, and a second series is obtained by an alternative synthesis strategy based on acetylation of well-defined linear poly(ethylene imine) (PEI) prepared by controlled side-chain hydrolysis of a defined high molar mass of poly(2-ethyl-2-oxazoline). The combination of these two series of PMeOx allowed the determination of the Kuhn–Mark–Houwink–Sakurada equations in a broad molar mass range. For intrinsic viscosity, sedimentation and diffusion coefficients, the following expressions were obtained: η=0.015M0.77, s0=0.019M0.42 and D0=2600M−0.58, respectively. As a result, it can be concluded that the phosphate-buffered saline buffer at 37 °C represents a thermodynamically good solvent for PMeOx, based on the scaling indices of the equations. The conformational parameters for PMeOx chains were also determined, revealing an equilibrium rigidity or Kuhn segment length, (A) of 1.7 nm and a polymer chain diameter (d) of 0.4 nm. The obtained value for the equilibrium rigidity is very similar to the reported values for other hydrophilic polymers, such as PEG, poly(vinylpyrrolidone) and poly(2-ethyl-2-oxazoline), making PMeOx a relevant alternative to PEG.

Funder

Russian Science Foundation

Research Foundation—Flanders

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3