Towards an Advanced Modeling of Hybrid Composite Cutting: Heat Discontinuity at Interface Region

Author:

Salem Brahim1,Mkaddem Ali2ORCID,Ghazali Sami2,Habak Malek3ORCID,Felemban Bassem F.4ORCID,Jarraya Abdessalem12ORCID

Affiliation:

1. LA2MP, National School of Engineering of Sfax, University of Sfax, Sfax 3038, Tunisia

2. Department of Mechanical and Materials Engineering, FOE, University of Jeddah, Jeddah 21589, Saudi Arabia

3. LTI, Avenue des Facultés Le Bailly, Université de Picardie Jules Verne, CEDEX 1, 80001 Amiens, France

4. Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21955, Saudi Arabia

Abstract

In this study, a thermomechanical model is developed to simulate a finite drilling set of Carbon Fibre Reinforced Polymers (CFRP)/Titanium (Ti) hybrid structures widely known for their energy saving performance. The model applies different heat fluxes at the trim plane of the two phases of the composite, owing to cutting forces, in order to simulate the temperature evolution at the workpiece during the cutting step. A user-defined subroutine VDFLUX was implemented to address the temperature-coupled displacement approach. A user-material subroutine VUMAT was developed to describe Hashin damage-coupled elasticity model for the CFRP phase while Johnson–Cook damage criteria was considered for describing the behavior of titanium phase. The two subroutines coordinate to evaluate sensitively the heat effects at the CFRP/Ti interface and within the subsurface of the structure at each increment. The proposed model has been first calibrated based on tensile standard tests. The material removal process was then investigated versus cutting conditions. Predictions show discontinuity in temperature field at interface that should further favor damage to localize especially at CFRP phase. The obtained results highlight the significant effects of fibre orientation in dominating cutting temperature and thermal effects over the whole hybrid structure.

Funder

DEPUTYSHIP FOR RESEARCH & INNOVATION, MINISTRY OF EDUCATION IN SAUDI ARABIA

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3