Affiliation:
1. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
Abstract
The biodegradable polymer poly(butylene adipate-co-terephthalate) (PBAT) starts decomposing at room temperature. Kaolin clay (KO) was dispersed and blended into PBAT composites using a solution-casting method. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to evaluate the structure and morphology of the composite materials. PBAT/kaolin clay composites were studied by thermogravimetric analysis (TGA). The PBAT composite loaded with 5.0 wt% kaolin clay shows the best characteristics. The biocomposites of PBAT/kaolin [PBC-5.0 (37.6MPa)] have a good tensile strength when compared to virgin PBAT (18.3MPa). The oxygen transmission rate (OTR), with ranges from 1080.2 to 311.7 (cc/m2/day), leads the KO content. By including 5.0 wt% kaolin 43.5 (g/m2/day), the water vapor transmission rate (WVTR) of the PBAT/kaolin composites was decreased. The pure PBAT must have a WVTR of 152.4 (g/m2/day). Gram-positive (S. aureus) and Gram-negative (E. coli) food-borne bacteria are significantly more resistant to the antimicrobial property of composites. The results show that PBAT/kaolin composites have great potential as food packaging materials due to their ability to decrease the growth of bacteria and improve the shelf life of packaged foods.
Funder
National Research Foundation of Korea
Ministry of SMEs and Startups
Subject
Polymers and Plastics,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献