Compressible Cellulose Wood Prepared with Deep Eutectic Solvents and Its Improved Technology

Author:

Wang Wenhao1,Chen Mengyao1,Wu Yan1

Affiliation:

1. College of Furniture and Industrial Design, Nanjing Forestry University, Nanjing 210037, China

Abstract

Elastic materials have a wide range of applications in many industries, but their widespread use is often limited by small-scale production methods and the use of highly polluting chemical reagents. In this study, we drew inspiration from research on wood softening to develop an environmentally friendly and scalable approach for producing a new type of compressible wood material called CW from natural wood. To achieve this, we employed a top-down approach using a novel type of “ionic liquid” eutectic solvent (DES) that is cost-effective, environmentally friendly, and recyclable. After treatment with DES, the resulting CW demonstrated good elasticity and durable compressibility, which was achieved by removing some lignin and hemicellulose from the wood and thinning the cell walls, thereby creating a honeycomb structure that allows for sustained compression and rebound. However, we found that the wood treated with a single eutectic solvent showed some softening (CW-1), although there was still room for further improvement of its elasticity. To address this, we used a secondary treatment with sodium hydroxide alkali solution to produce a softer and more elastic wood (CW-2). We conducted a series of comparative analyses and performance tests on natural wood (NW) and CW, including microscopic imaging; determination of chemical composition, mechanical properties, and compressive stress effects; and laser confocal testing. The results show that the DES and sodium hydroxide alkali solution treatments effectively removed some lignin, hemicellulose, and cellulose from the wood, resulting in the thinning of the cell walls and creating a more elastic material with a sustainable compression rebound rate of over 90%. The various properties of CW, including its elasticity, durability, and sustainability, provide great potential for its application in a range of fields, such as sensors, water purification, and directional tissue engineering.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3