Ballistic Response of a Glass Fiber Composite for Two Levels of Threat

Author:

Ojoc George Ghiocel1,Chiper Titire Larisa1,Munteniță Cristian1,Pîrvu Cătălin2,Sandu Simona3,Deleanu Lorena1ORCID

Affiliation:

1. Faculty of Engineering, “Dunarea de Jos” University, 800008 Galati, Romania

2. National Institute for Aero-Space Research (INCAS) “Elie Carafoli”, 061126 Bucharest, Romania

3. Center for Research and Innovation for CBRN Defense and Ecology, 02512 Bucharest, Romania

Abstract

This paper presents the behavior of composite panels based on glass fiber unidirectional fabrics and a bi-component epoxy resin under ballistic impacts that characterize two threat levels: FB2 and FB3, according to EN 1523:2004. The tested panels had characteristics kept in narrow ranges: thickness 18.26 ± 0.22 mm, mass ratio fabrics/panel 0.788 ± 0.015, surface density 27.51 ± 0.26 kg/m2. After testing the panels, the failure mechanisms of the panel were evidenced by scanning electron microscopy and photographs. Here the authors present a finite-element model at meso scale that was used for evaluating if the composite, initially tested at level FB2 (9 mm FMJ, v0 = 375 m/s), could withstand the higher level of impact, FB3 (projectile type 0.357 Magnum and impact velocity of v0 = 433 m/s). Simulation was performed in Explicit Dynamics (Ansys), keeping the same target but changing the projectile for the two different levels of threat. The results of the simulation were encouraging for making tests at level FB3, indicating the importance of alternating actual tests with simulations in order to achieve better protection with reduced surface weight. The simulation illustrated differences in impact duration and number of layers broken on the panel for each level. Validation of the model was based on the number of broken layers and the dimension of the delamination zone between the last two layers. Scanning electron microscopy was used for identifying failure mechanisms at the micro and meso scale. We found that damage to the composite was intensively dependent on impact velocity, this being quantitatively evaluated using the number of layers broken, the effect of delamination on separating layers and the deformation of the last layer.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3