Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study

Author:

D’Angelo Antonio12,Vertuccio Luigi1,Leonelli Cristina3ORCID,Alzeer Mohammad I. M.4,Catauro Michelina1ORCID

Affiliation:

1. Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma n. 29, 81031 Aversa, Italy

2. Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy

3. Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy

4. Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90014 Oulu, Finland

Abstract

Few studies have explored the immobilization of organic macromolecules within the geopolymer matrix, and some have found their chemical instability in the highly alkaline geopolymerization media. The present work reports on the feasibility of encapsulating the potentially toxic acridine orange (AO) dye in a metakaolin based geopolymer while maintaining its structural integrity. The proper structural, chemical, and mechanical stabilities of the final products were ascertained using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric (TGA/DTG), and mechanical analyses, whereas the dye integrity and its stability inside the geopolymer were investigated by the UV-Vis analysis. In addition, the antimicrobial activity was investigated. The FT-IR and XRD analyses confirmed the geopolymerization occurrence, whereas the TGA/DTG and mechanical (compressive and flexural) strength revealed that the addition of 0.31% (AO mg/ sodium silicate L) of AO to the fresh paste did not affect the thermal stability and the mechanical properties (above 6 MPa in flexural strength and above 20 MPa for compressive strength) of the hardened product. UV-Vis spectroscopy revealed that the dye did not undergo chemical degradation nor was it released from the geopolymer matrix. The results reported herein provide a useful approach for the safe removal of toxic macromolecules by means of encapsulation within the geopolymer matrix.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3