Synthesis and Application of a Novel Metal–Organic Frameworks-Based Ion-Imprinted Polymer for Effective Removal of Co(II) from Simulated Radioactive Wastewater

Author:

Yu Li1,Lan Tu2ORCID,Yuan Guoyuan1,Duan Chongxiong3ORCID,Pu Xiaoqin1,Liu Ning2

Affiliation:

1. College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

2. Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China

3. School of Materials Science and Energy Engineering, Foshan University, Foshan 528231, China

Abstract

In this work, a novel metal–organic frameworks (MOFs)-based ion-imprinted polymer (MIIP) was prepared to remove Co(II) from simulated radioactive wastewater. The batch experiments indicated that the sorption was well described by the pseudo-second-order kinetic and Langmuir models, and it is monolayer chemisorption. The theoretical maximum sorption capacity was estimated to be 181.5 mg∙g−1, which is by far the reported maximum value of Co(II) sorption by the imprinted materials. The MIIP presented an excellent selectivity for Co(II) in the presence of common monovalent and divalent metal ions, and the selectivity coefficients were 44.31, 33.19, 10.84, 27.71, 9.45, 16.25, and 7.60 to Li(I), K(I), Mg(II), Ca(II), Mn(II), Ba(II), and Cd(II), respectively. The sorption mechanism was explored by X-ray photoelectron spectroscopy (XPS) technology and density functional theory (DFT) calculations, suggesting that Co(II) was adsorbed by the MIIP via the chelation of 4-vinylpyridine (VP) ligands with Co(II), which was a spontaneous process, and the optimal coordination ratio of VP to Co(II) was 6. This work suggested that the MIIP has a high sorption capacity and excellent selectivity for Co(II), which is of great significance for the selective separation of Co-60 from radioactive wastewater.

Funder

National Natural Science Foundation of China

Foundation of Key Laboratory of Radiation Physics and Technology of the Ministry of Education

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3