Rice Husk-Based Adsorbents for Removal of Metals from Aqueous Solutions

Author:

Yefremova Svetlana1ORCID,Kablanbekov Askhat12,Satbaev Baimakhan3,Zharmenov Abdurassul1

Affiliation:

1. National Center on Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan RSE, Almaty 050036, Kazakhstan

2. School of Materials Science and Green Technologies, Kazakh-British Technical University, Almaty 050000, Kazakhstan

3. Astana Branch of the National Center on Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan RSE, Astana 010000, Kazakhstan

Abstract

Adsorption is one of the main methods of water purification. Novel advanced, eco-friendly, cost-effective adsorbents with high adsorption capacity and selectivity are required to remove pollutants from aqueous solutions. Plant polymers are viewed as both prospective adsorbents and as raw materials to produce them instead of conventional adsorption materials. There is widespread interest in using rice husk as a universal sorbent to remove different contaminants from aqueous media because of its surplus availability, low cost, and high content of oxygen containing functional and silanol groups as active sites for adsorptive extraction. Different methods of heat and chemical treatments have been developed to improve the sorption properties of raw rice husk. Unmodified rice husk and rice-husk-based sorbents have been tested to uptake non-ferrous, ferrous, minor, precious, rare, and rare-earth metals and radionuclides from artificial and industrial solutions, natural contaminated water, and industrial wastewater. This review summarizes the results of numerous studies and characterizes the current state of work in this area, with recommendations for further development.

Funder

Science Committee of the Ministry of Science

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3