Affiliation:
1. Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
Abstract
Supramolecular structures obtained from protein–polysaccharide association may be applied to encapsulate bioactive compounds or to improve the physical stability and texture properties of colloid–based products. In this study, the interaction of 0.1 wt% soybean trypsin inhibitor (STI) with different concentrations of chitosan (CS) in aqueous solutions was investigated under different pH by the analysis of state diagram, turbidity, zeta potential, spectroscopy, and microstructure; the protective effect of STI–CS complex coacervates on STI stability in simulated gastric juice was also discussed. The results suggested that interactions between STI and CS could form soluble/insoluble complexes mainly through hydrophobic interactions (pH 4.0) or electrostatic interactions (pH 6.0). The CD spectra showed that the secondary structure of STI did not change significantly when CS with the same charge was mixed with STI, and the secondary structure of STI was slightly changed when CS with the opposite charge was mixed with STI. Simulated gastric digestion experiments showed that the complex formed by non-covalent bonding had a protective effect on the active protein. This study provides information about the effect of different CS concentrations and pH values on the formation of complexes of CS and STI in an aqueous solution and provides theoretical references for the construction of supramolecular-structured carrier substances based on CS and STI.
Funder
National Key Research and Development Program of China
Cultivation Project of Double First-Class Disciplines of Food Science and Engineering, Beijing Technology & Business University
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献