Optimal Tailoring of CNT Distribution in Functionally Graded Porous CNTRC Beams

Author:

Cho J. R.ORCID,Kim H. J.

Abstract

This paper is concerned with the multi-objective optimization of thickness-wise CNT distribution in functionally graded porous CNT-reinforced composite (FG-porous CNTRC) beams. The mechanical behaviors of FG-porous CNTRC structures are strongly influenced by the thickness-wise distributions of CNTs and porosity. Nevertheless, several linear functions were simply adopted to represent the thickness-wise CNT distribution without considering the porosity distribution, so these assumed linear primitive CNT distribution patterns are not sufficient to respond to arbitrary loading and boundary conditions. In this context, this study presents the multi-objective optimization of thickness-wise CNT distribution in FG-CNTRC porous beams to simultaneously minimize the peak effective stress and the peak deflection. The multi-objective function is defined by the larger value between two normalized quantities and the design variable vector is composed of the layer-wise CNT volume fractions. The constrained multi-objective optimization problem is formulated by making use of the exterior penalty-function method and the aspiration-level adjustment. The proposed optimization method is demonstrated through the numerical experiments, and the optimization solutions are investigated with respect to the porosity distribution and the combination of aspiration levels for two single-objective functions. It is found from the numerical results that the optimum CNT distribution is significantly affected by the porosity distribution. Furthermore, the proposed method can be successfully used to seek an optimum CNT distribution within FG-porous CNTRC structures which simultaneously enhances the multi-objective functions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3