Effects of Annealing Temperature and Time on Properties of Thermoplastic Polyurethane Based on Different Soft Segments/Multi-Walled Carbon Nanotube Nanocomposites

Author:

Jirakittidul KittimonORCID,Limthin Darawan,Mahithithummathorn Sarita,Phaewchimphlee Seenam

Abstract

Typically, polymer chains can move under the annealing process, resulting in an ordered structure arrangement. This causes an improvement in nanocomposite properties and in the dispersion of filler. In this research, annealed thermoplastic polyurethane (PU)/multi-walled carbon nanotube (MWCNT) nanocomposites were studied to investigate the effect of annealing on the selective dispersion of MWCNTs. PU matrices were composed of two different soft segments, i.e., polyether (PU-Ether) and polyester (PU-Ester). Nanocomposites were prepared by the melt mixing process and annealed at 80 to 120 °C for 6 to 24 h. The increases in annealing time and temperature resulted in microphase separation in segmented PU and the orientation of crystalline structures in the segregated hard domain. Nanocomposites showed higher electrical conductivity after annealing. This implies that the movement of PU chains during heat treatment encouraged the development of the MWCNT network. However, the increase in ordered structures could obstruct the MWCNT network, resulting in lower electrical conductivity levels. Considering the selective dispersion of MWCNT in PU matrices, it was found that MWCNTs dispersed in soft segments of PU-Ether, leading to a significant decrease in elongation at the break after annealing. On the other hand, a decrease in elasticity of PU-Ester nanocomposites was not observed as a result of MWCNT dispersal in hard segments.

Funder

School of Science, King Mongkut’s Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3