The effect of polyaniline composition on the polyurethane/polyaniline composite properties: The enhancement of electrical and mechanical properties for medical tissue engineering

Author:

Manop Dhonluck1,Tanghengjaroen Chaileok1,Putson Chatchai2,Khaenamkaew Panya1

Affiliation:

1. Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi, Thailand, 20230

2. Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand, 90110

Abstract

<abstract> <p>This study addresses the urgent need for the preparation and characterization of conductive polyurethane/polyaniline (PU/PANI) polymers for medical device applications, particularly in the context of the COVID-19 situation. Composite films of PU/PANI were synthesized using the solution casting method. Fourier-transform infrared (FT-IR) results confirmed the presence of PANI, as indicated by absorption bands at 1597 and 1531 cm<sup>−1</sup> corresponding to C = C and C–N stretching, respectively. Microscopic analyses using scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a homogeneous distribution of PANI in the PU matrix up to approximately 3 wt.%, with inhomogeneity observed at 5 wt.%. The dielectric constants at 1 Hz for PANI contents of 1, 3, and 5 wt.% in the PU matrix were 12.5, 18.5, and 35.0, respectively. The conductivity exhibited a decreasing trend with an increasing driving frequency. Conversely, for comparative purposes, the dielectric and conductivity values increased with higher PANI contents. The elastic modulus slightly increased from 20.3, 20.8, and 21.2 for 1, 3, and 5 wt.%, respectively. The experimental results emphasize the superior mechanical-to-electrical conversion performance of PU/PANI composites compared to neat PU, thus indicating potential applications in medical tissue engineering that utilize conductive PU/PANI polymers.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference33 articles.

1. Grand View Research (2020) Polyurethane foam market size, share & trends analysis report by product (rigid foam, flexible foam), by application (bedding & furniture, transportation, packaging, construction, electronics, footwear), by region, and segment forecasts. Available from: https://www.grandviewresearch.com/industry-analysis/polyurethane-foam-market.

2. Bar-Cohen Y, Leary S, Harrison J, et al. (1999) Electroactive polymer (EAP) actuation of mechanisms and robotic devices. The 10th International Conference on Solid-state Sensors and Actuators, Sendai, Japan, June 7–10.

3. Akindoyo JO, Beg M, Ghazali S, et al. (2016) Polyurethane types, synthesis and applications—A review. Rsc Adv 6: 114453–114482. https://doi.org/10.1039/C6RA14525F

4. Naveen MH, Gurudatt NG, Shim YB (2017) Applications of conducting polymer composites to electrochemical sensors: A review. Appl Mater Today 9: 419–433. http://dx.doi.org/10.1016/j.apmt.2017.09.001

5. Sobczak M, Kędra K (2022) Biomedical polyurethanes for anti-cancer drug delivery systems: A brief, comprehensive review. Int J Mol Sci 23: 8181. https://doi.org/10.3390/ijms23158181

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3