Effects of Accelerated Aging on Thermal, Mechanical and Shape Memory Properties of Cyanate-Based Shape Memory Polymer: III Vacuum Thermal Cycling

Author:

Ping Zhongxin1,Xie Fang2ORCID,Gong Xiaobo3,Liu Liwu4,Leng Jinsong1,Liu Yanju4

Affiliation:

1. Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China

2. Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China

3. School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China

4. Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China

Abstract

Shape memory polymers (SMPs) with intelligent deformability have shown great potential in the field of aerospace, and the research on their adaptability to space environments has far-reaching significance. Chemically cross-linked cyanate-based SMPs (SMCR) with excellent resistance to vacuum thermal cycling were obtained by adding polyethylene glycol (PEG) with linear polymer chains to the cyanate cross-linked network. The low reactivity of PEG overcame the shortcomings of high brittleness and poor deformability while endowing cyanate resin with excellent shape memory properties. The SMCR with a glass transition temperature of 205.8 °C exhibited good stability after vacuum thermal cycling. The SMCR maintained a stable morphology and chemical composition after repeated high–low temperature cycle treatments. The SMCR matrix was purified by vacuum thermal cycling, which resulted in an increase in its initial thermal decomposition temperature by 10–17 °C. The continuous vacuum high and low temperature relaxation of the vacuum thermal cycling increased the cross-linking degree of the SMCR, which improved the mechanical properties and thermodynamic properties of SMCR: the tensile strength of SMCR was increased by about 14.5%, the average elastic modulus was greater than 1.83 GPa, and the glass transition temperature increased by 5–10 °C. Furthermore, the shape memory properties of SMCR after vacuum thermal cycling treatment were well maintained due to the stable triazine ring formed by the cross-linking of cyanate resin. This revealed that our developed SMCR had good resistance to vacuum thermal cycling and thus may be a good candidate for aerospace engineering.

Funder

Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3