Exploring the High‐Temperature Window of Operation for Organic Photovoltaics: A Combined Experimental and Simulations Study

Author:

Negash Asfaw123ORCID,Hustings Jeroen1,Robert Allyson1,Genene Zewdneh4,Yilma Desalegn5,Schreurs Dieter6,Mathijs Michiel1,Liesenborgs Jori7,Van Reeth Frank7,Vandewal Koen6,Mammo Wendimagegn5,Admassie Shimelis5,Maes Wouter6,Manca Jean V.1ORCID

Affiliation:

1. UHasselt X‐LAB Agoralaan Building D Diepenbeek B‐3590 Belgium

2. Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

3. Department of Chemistry Debre Berhan University P.O. BOX 445 Debre Berhan Ethiopia

4. Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg SE‐412 96 Sweden

5. Department of Chemistry Addis Ababa University P.O. BOX 33658 Addis Ababa Ethiopia

6. UHasselt IMO‐IMOMEC Wetenschapspark 1 Diepenbeek B‐3590 Belgium

7. UHasselt Expertise Centre for Digital Media (EDM) Diepenbeek B‐3590 Belgium

Abstract

AbstractThe global climate change negatively affects the photovoltaic performance of traditional solar cell technologies. This article investigates the potential of organic photovoltaics (OPV) for high‐temperature environments, ranging from urban hot summers (30—40 °C) and desert regions (65 °C) up to (aero) space conditions (130 °C), the thermal window in which OPV can operate. The approach is based on a combination of experiments and simulations up to 180 °C, moving significantly beyond the conventional temperature ranges reported in the literature. New 2H‐benzo[d][1,2,3]triazole‐5,6‐dicarboxylic imide‐based copolymers with decomposition onset temperatures above 340 °C are used for this study, in combination with non‐fullerene acceptors. Contrary to their inorganic counterparts, OPV devices show a positive temperature coefficient up to ≈90 °C. At temperatures of 150 °C, they are still operational, retaining their room temperature efficiency. Complementary simulations are performed using an in‐house developed software package that numerically solves the drift‐diffusion equations to understand the general trends in the obtained current–voltage characteristics and the materials’ intrinsic behavior as a function of temperature. The presented methodology of combined high‐temperature experiments and simulations can be further applied to investigate the thermal window of operation for other OPV material systems, opening novel high‐temperature application routes.

Funder

Alexander von Humboldt-Stiftung

Universiteit Hasselt

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3