Low-Cost I–V Tracer for PV Fault Diagnosis Using Single-Diode Model Parameters and I–V Curve Characteristics

Author:

Kongphet VorachackORCID,Migan-Dubois Anne,Delpha ClaudeORCID,Lechenadec Jean-Yves,Diallo DembaORCID

Abstract

The continuous health monitoring of PV modules is mandatory to maintain their high efficiency and minimize power losses due to faults or failures. In this work, a low-cost embedded tracer is developed to measure the I–V curve of a PV module in less than 0.2 s. The data are used to extract the five parameters of the single-diode model and its main characteristics (open-circuit voltage, short-circuit current, and maximum power). Experimental data are used to validate the analytical model and evaluate the two fault diagnosis methods, using as fault features the parameters of the single-diode model or the main characteristics of the I–V curve. The results, based on field data under different temperatures and irradiances, show that the degradation of series and shunt resistances could be detected more accurately with the main characteristics rather than with the parameters. However, the estimated parameters could still be used to monitor the long-term degradation effects.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference41 articles.

1. Technical Report of International Energy Agencyhttps://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf

2. Renewables 2021 Global Status Report. Technical Report of the Renewable Energy Policy Network for the 21st Century, Parishttps://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf

3. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques

4. Review of O&M Practices in PV Plants: Failures, Solutions, Remote Control, and Monitoring Tools

5. Power loss due to soiling on solar panel: A review

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3