Parameter Estimation and Preliminary Fault Diagnosis for Photovoltaic Modules Using a Three-Diode Model

Author:

Huang Chao-Ming1ORCID,Chen Shin-Ju1ORCID,Yang Sung-Pei2ORCID,Huang Yann-Chang3,Huang Pao-Yuan1

Affiliation:

1. Department of Electrical Engineering, Kun Shan University, Tainan 710, Taiwan

2. Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan

3. Department of Electrical Engineering, Cheng Shiu University, Kaohsiung 833, Taiwan

Abstract

Accurate estimation of photovoltaic (PV) power generation can ensure the stability of regional voltage control, provide a smooth PV output voltage and reduce the impact on power systems with many PV units. The internal parameters of solar cells that affect their PV power output may change over a period of operation and must be re-estimated to produce a power output close to the actual value. To accurately estimate the power output for PV modules, a three-diode model is used to simulate the PV power generation. The three-diode model is more accurate but more complex than single-diode and two-diode models. Different from the traditional methods, the 9 parameters of the three-diode model are transformed into 16 parameters to further provide more refined estimates. To accurately estimate the 16 parameters in the model, an optimization tool that combines enhanced swarm intelligence (ESI) algorithms and the dynamic crowing distance (DCD) index is used based on actual historical PV power data and the associated weather information. When the 16 parameters for a three-diode model are accurately estimated, the I–V (current-voltage) curves for different solar irradiances are plotted, and the possible failures of PV modules can be predicted at an early stage. The proposed method is verified using a 200 kWp PV power generation system. Three different diode models that are optimized using different ESI algorithms are compared for different weather conditions. The results affirm the reliability of the proposed ESI algorithms and the value of creating more refined estimation models with more parameters. Preliminary fault diagnosis results based on the differences between the actual and estimated I–V curves are provided to operators for early maintenance reference.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3