Implementation of the Bio-Inspired Metaheuristic Firefly Algorithm (FA) Applied to Maximum Power Point Tracking of Photovoltaic Systems

Author:

Watanabe Rodrigo Bairros,Ando Junior Oswaldo HideoORCID,Leandro Paulo Gabriel Martins,Salvadori FabianoORCID,Beck Marlon Felipe,Pereira Katiane,Brandt Marcelo Henrique ManzqueORCID,de Oliveira Fernando MarcosORCID

Abstract

In this paper, an algorithm for the maximum extraction of energy generated by photovoltaic (PV) systems was presented. The tracking of the global maximum point of the system is complex due to the non-linearity of the current-voltage (I-V) characteristic curve of the photovoltaic modules, as they vary according to the temperature and solar irradiation in the module. To obtain the best energy efficiency in these systems, it is important that the generation is delivering the maximum power available through the arrangement. In order to solve such problems, in this work an efficient MPPT-FA method was proposed, which showed good traceability when compared to traditional methods. Most traditional MPPT techniques are not able to find the global maximum point to extract the maximum power provided by the PV system. Finally, the Firefly Metaheuristic MPPT method proved to be robust against several partial shading scenarios. Simulations were presented to demonstrate the effectiveness of the proposal when compared to the traditional MPPT-PO method.

Funder

Federal University of Paraíba

National Council for Scientific and Technological Development

Federal University for Latin American Integration

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. Rastreamento da Máxima Potência em Arranjos Fotovoltaicos sob Efeito de Sombreamento Parcial Baseado no Método de Otimização por Enxame de Partículas;Oliveira;Master’s Thesis,2015

2. Analysis of the Topologies of Power Filters Applied in Distributed Generation Units - Review

3. Forecasting Solar Power Output Generation: A Systematic Review with the Proknow-C

4. Methodology for Calculation and Management for Indicators of Power Quality Energy

5. Solar cell efficiency tables (Version 39);Emery;Prog. Photovolt. Res. Appl.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3