Development of an MPPT-Based Genetic Algorithm for Photovoltaic Systems versus Classical MPPT Techniques in Scenarios with Partial Shading

Author:

de Oliveira Fernando Marcos12,Brandt Marcelo Henrique Manzke12,Salvadori Fabiano3,Izquierdo José Enrique Eirez4ORCID,Cavallari Marco Roberto24ORCID,Ando Junior Oswaldo Hideo1235ORCID

Affiliation:

1. Interdisciplinary Postgraduate Program in Energy & Sustainability (PPGIES), Federal University of Latin American Integration—UNILA, Foz do Iguaçu 85867-000, PR, Brazil

2. Research Group on Energy & Energy Sustainability (GPEnSE), Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil

3. Smart Grid Laboratory (LabREI), Center for Alternative and Renewable Research (CEAR), Federal University of Paraiba (UFPB), João Pessoa 58051-900, PB, Brazil

4. Faculdade de Engenharia Elétrica e de Computação (FEEC), Universidade Estadual de Campinas (UNICAMP), Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil

5. Program in Energy Systems Engineering (PPGESE), Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil

Abstract

Photovoltaic (PV) systems face challenges in achieving maximum energy extraction due to the non-linear nature of their current versus voltage (IxV) characteristics, which are influenced by temperature and solar irradiation. These factors lead to variations in power generation. The situation becomes even more complex under partial shading conditions, causing distortion in the characteristic curve and creating discrepancies between local and global maximum power points. Achieving the highest output is crucial to enhancing energy efficiency in such systems. However, conventional maximum power point tracking (MPPT) techniques often struggle to locate the global maximum point required to extract the maximum power from the PV system. This study employs genetic algorithms (GAs) to address this issue. The system can efficiently search for the global maximum point using genetic algorithms, maximizing power extraction from the PV arrangements. The proposed approach is compared with the traditional Perturb and Observe (P&O) method through simulations, demonstrating its superior effectiveness in achieving optimal power generation.

Funder

Fundação de Amparo a Pesquisa de Pernambuco

Brazilian National Council for Scientific and Technological Development

Federal University of Latin American Integration

UNICAMP

Programa de Incentivo a Novos Docentes

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3