Analysis of Perovskite Solar Cell Degradation over Time Using NIR Spectroscopy—A Novel Approach

Author:

Gąsiorowski Marek,Dasgupta Shyantan,Bychto LeszekORCID,Ahmad TaimoorORCID,Szymak PiotrORCID,Wojciechowski KonradORCID,Patryn AleksyORCID

Abstract

In recent years, there has been a dynamic development of photovoltaic materials based on perovskite structures. Solar cells based on perovskite materials are characterised by a relatively high price/performance ratio. Achieving stability at elevated temperatures has remained one of the greatest challenges in the perovskite solar cell research community. However, significant progress in this field has been made by utilising different compositional engineering routes for the fabrication of perovskite semiconductors such as triple cation-based perovskite structures. In this work, a new approach for the rapid analysis of the changes occurring in time in perovskite structures was developed. We implemented a quick and inexpensive method of estimating the ageing of perovskite structures based on an express diagnosis of light reflection in the near-infrared region. The possibility of using optical reflectance in the NIR range (900–1700 nm) to observe the ageing of perovskite structures over time was investigated, and changes in optical reflectance spectra of original perovskite solar cell structures during one month after PSC production were monitored. The ratio of characteristic pikes in the reflection spectra was determined, and statistical analysis by the two-dimensional correlation spectroscopy (2D-COS) method was performed. This method allowed correctly detecting critical points in thermal ageing over time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference32 articles.

1. Photovoltaic Report. Fraunhofer Institute for Solar Energy Systems Freiburg https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

2. NREL Chart

3. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

4. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

5. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3