Advancements in Perovskite Nanocrystal Stability Enhancement: A Comprehensive Review

Author:

Liu Xuewen1,Lee Eun-Cheol12ORCID

Affiliation:

1. Department of Nano Science and Technology, Graduate School, Gachon University, Seongnam-si 13120, Republic of Korea

2. Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea

Abstract

Over the past decade, perovskite technology has been increasingly applied in solar cells, nanocrystals, and light-emitting diodes (LEDs). Perovskite nanocrystals (PNCs) have attracted significant interest in the field of optoelectronics owing to their exceptional optoelectronic properties. Compared with other common nanocrystal materials, perovskite nanomaterials have many advantages, such as high absorption coefficients and tunable bandgaps. Owing to their rapid development in efficiency and huge potential, perovskite materials are considered the future of photovoltaics. Among different types of PNCs, CsPbBr3 perovskites exhibit several advantages. CsPbBr3 nanocrystals offer a combination of enhanced stability, high photoluminescence quantum yield, narrow emission bandwidth, tunable bandgap, and ease of synthesis, which distinguish them from other PNCs, and make them suitable for various applications in optoelectronics and photonics. However, PNCs also have some shortcomings: they are highly susceptible to degradation caused by environmental factors, such as moisture, oxygen, and light, which limits their long-term performance and hinders their practical applications. Recently, researchers have focused on improving the stability of PNCs, starting with the synthesis of nanocrystals and optimizing (i) the external encapsulation of crystals, (ii) ligands used for the separation and purification of nanocrystals, and (iii) initial synthesis methods or material doping. In this review, we discuss in detail the factors leading to instability in PNCs, introduce stability enhancement methods for mainly inorganic PNCs mentioned above, and provide a summary of these approaches.

Funder

National Research Foundation of Korea

Gachon University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference171 articles.

1. Die gesetze der krystallochemie;Goldschmidt;Naturwissenschaften,1926

2. Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms;Lin;J. Hazard. Mater.,2022

3. Review on efficiency improvement effort of perovskite solar cell;Zhang;Sol. Energy,2022

4. Low-dimensional perovskites: From synthesis to stability in perovskite solar cells;Yusoff;Adv. Energy Mater.,2018

5. A review on perovskite solar cells (PSCs), materials and applications;Kumar;J. Mater.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3