Abstract
In the traditional coal-mine gas-concentration prediction process, problems such as low timeliness of data and low efficiency of the prediction model in learning data features result in low accuracy of the final prediction. To solve these problems, a gas-concentration prediction method driven by the Spark Streaming framework is proposed. In this research study, the Spark Streaming framework, autoregressive integrated moving average (ARIMA) model and support vector machine (SVM) model are used to construct a new prediction model called the SPARS model. The Spark Streaming framework is used to process large batches of real-time streaming data in a short period of time, and the model can be used to intermittently update and optimize the prediction model so that the model can fully learn the characteristics of the data. At the same time, the advantages of the ARIMA model and SVM model for processing linear data and nonlinear data are combined to improve the model’s prediction efficiency and fully reflect the timeliness of gas prediction. Finally, the proposed prediction model is verified using gas data collected on site. The optimal learning time for the SPARS model in predicting this set of data is determined, and a comparative analysis of the prediction results obtained from the ARIMA, SVM and other models fully confirms that high-precision prediction results can be obtained using the SPARS model. The proposed model can be used to realize scientific and accurate real-time prediction and analyses of coal-mine gas concentrations and provides a new idea for realizing real-time and accurate gas prediction in coal mines.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference36 articles.
1. FA-LSTM: A Novel Toxic Gas Concentration Prediction Model in Pollutant Environment
2. Distributed gas concentration prediction with intelligent edge devices in coal mine
3. Prediction of Gas Concentration Based on LSTM-LightGBM Variable Weight Combination Model
4. Technical system and prospect of safe and efficient mining of coal and gas outburst coal seams;Li;Coal Sci. Technol.,2020
5. Status and prospect of coal mine gas drainage and utilization technology in Xinjiang Coal Mining Area;Wang;Coal Sci. Technol.,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献