Prediction of Gas Concentration Based on LSTM-LightGBM Variable Weight Combination Model

Author:

Wang Xiangqian,Xu Ningke,Meng Xiangrui,Chang Haoqian

Abstract

Gas accidents threaten the safety of underground coal mining, which are always accompanied by abnormal gas concentration trend. The purpose of this paper is to improve the prediction accuracy of gas concentration so as to prevent gas accidents and improve the level of coal mine safety management. Combining the LSTM model with the LightGBM model, the LSTM-LightGBM model is proposed with variable weight combination method based on residual assignment, which considers not only the time subsequence feature of data, but also the nonlinear characteristics of data. During the data preprocessing, the optimal parameters of gas concentration prediction are determined through the analysis of the Pearson correlation coefficients of different sensor data. The experimental results demonstrate that the mean absolute errors of LSTM-LighGBM, LSTM and LightGBM are 1.94%, 2.19% and 2.77%, respectively. The accuracy of LSTM-LightGBM variable weight combination model is better than that of the two above models, respectively. In this way, this study provides a novel idea and method for gas accident prevention based on gas concentration prediction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Analysis of coal demand, exploration potential and efficient utilization in China;Teng;Chin. J. Geophys.,2016

2. Short-term prediction of mine gas concentration based on chaotic time series;Cheng;J. China Univ. Mine. Technol.,2008

3. Current status and prospects of coal and gas outburst prediction and prevention technology

4. Prediction of gas concentration based on multi-sensor-deep long and short time memory network fusion;Fu;J. Sens. Technol.,2021

5. Improved grey gas concentration series prediction based on ensemble learning;Lai;China Work. Saf. Sci. Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3