Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality based on Cow Data and Daily Environmental Parameters

Author:

Fuentes SigfredoORCID,Gonzalez Viejo ClaudiaORCID,Cullen BrendanORCID,Tongson Eden,Chauhan Surinder S.ORCID,Dunshea Frank R.ORCID

Abstract

Increased global temperatures and climatic anomalies, such as heatwaves, as a product of climate change, are impacting the heat stress levels of farm animals. These impacts could have detrimental effects on the milk quality and productivity of dairy cows. This research used four years of data from a robotic dairy farm from 36 cows with similar heat tolerance (Model 1), and all 312 cows from the farm (Model 2). These data consisted of programmed concentrate feed and weight combined with weather parameters to develop supervised machine learning fitting models to predict milk yield, fat and protein content, and actual cow concentrate feed intake. Results showed highly accurate models, which were developed for cows with a similar genetic heat tolerance (Model 1: n = 116, 456; R = 0.87; slope = 0.76) and for all cows (Model 2: n = 665, 836; R = 0.86; slope = 0.74). Furthermore, an artificial intelligence (AI) system was proposed to increase or maintain a targeted level of milk quality by reducing heat stress that could be applied to a conventional dairy farm with minimal technology addition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Invited review: Learning from the future—A vision for dairy farms and cows in 2067

2. Impact of precision livestock farming on work and human-animal interactions on dairy farms. A review;Hostiou;Biotechnol. Agron. Soc. Environ.,2017

3. Global dairy outlook by 2030: Industry;McCullough;The Dairy Mail,2019

4. Beyond resistance: Geographies of divergent more-than-human conduct in robotic milking

5. The Cows That Queue up to Milk Themselveshttps://robohub.org/the-cows-that-queue-up-to-milk-themselves-bbc-news/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3