PREDICTION OF DRIVING TIME OF ELECTRIC SCOOTER (E-SCOOTER) DRIVERS BY MACHINE LEARNING

Author:

İnaç Hakan1ORCID

Affiliation:

1. T.C. Ulaştırma ve Altyapı Bakanlığı

Abstract

This study aims to estimate the driving times of drivers who prefer electric scooter vehicles. In general, e-scooters reduce the loss of time caused by traffic jams because, thanks to their smaller size and maneuverability, these vehicles provide rapid progress in urban journeys. E-scooters also offer an advantage in finding a parking space and easy parking thanks to their more compact structure. In this study, ML algorithms were used to predict the driving times of drivers who prefer e-scooter vehicles. The AB model has performed well with a low Mean Square Error (MSE) value (0.005). The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values are also relatively low (0.069 and 0.039, respectively), indicating that the model's predictions are close to the actual values. Also, the high R-squared-Coefficient of Determination (R2) value (0.947) suggests that this model explains the data quite well, and its predictions approach the actual values with high accuracy. On the other hand, the GB algorithm performed poorly compared to different algorithms, with its high margin of error and low accuracy rate. These results provide an advantage in time management by estimating the travel time a driver will make with the e-scooter. As a result, e-scooters offer drivers the opportunity to save time and manage their daily mobility more effectively, driving these vehicles attractive for transportation.

Publisher

Electronic Journal of Social Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3