Abstract
A Tribaloy family of alloys (CoMoCrSi) are characterized by a substantial resistance to wear and corrosion within a wide range of temperatures. These properties are a direct result of their microstructure including the presence of Laves phase in varying proportions. Tribaloy T-800 exhibits the highest content of Laves phase of all other commercial Tribaloy alloys, which provides high hardness and wear resistance. On the other hand, a large content of the Laves phase brings about a high sensitivity to brittle fracture of this alloy. The main objective of this work was a development of the Tribaloy T-800 coatings on the Ni-based superalloy substrate (RENE 77), which employs a Laser Engineered Net Shaping (LENSTM) technique. Technological limitations in this process are susceptibility of T-800 to brittle fracture as well as significant thermal stresses due to rapid cooling, which is an inherent attribute of laser techniques. Therefore, in this work, a number of steps that optimized the LENSTM process and improved the metallurgical soundness of coatings are presented. Employing volume and local substrate pre-heating resulted in the formation of high quality coatings devoid of cracks and flaws.
Funder
Ministry of National Defense Republic of Poland
Subject
General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献