Investigating the Effects of CoMoCrSi Powder Composition and Particle Size, and Annealing Heat Treatment on Microstructure and Mechanical and Tribological Performance of HVOF Sprayed Coatings

Author:

Ertürk Murat TolgaORCID,Tirkeş SühaORCID,Gür Cemil HakanORCID

Abstract

AbstractAn investigation was conducted to analyze the mechanical properties, wear behavior, and microstructure of coatings formed by high-velocity oxygen fuel spraying of CoMoCrSi powders. The effects of varying Cr concentration and particle sizes before and after heat treatment at 900 °C for 4 h were studied comparatively. The increase in Cr and Mo elements in the expanse of Co increased the structure's hardness before and after the heat treatment. As this increase was 10% in as-sprayed conditions, annealing raised the increase to 30%. Splat boundaries were the most vulnerable constituents against forces, creating a significant disadvantage in terms of structural integrity and affecting the overall performance. After annealing, the boundary strengths experienced a remarkable four-fold increase and cracks and fractures reduced significantly. The susceptibility of splat boundaries had a detrimental effect on room temperature wear behavior, and increased boundary densities led to a marked reduction in wear performance. Heat treatment induced improvements significantly increased the room temperature wear performance. At elevated temperature, the formation of oxide layers composed of CoMoO4, Co3O4, MoO3, and Cr2O3 overcame the weaknesses of the as-sprayed coating, reducing both the friction coefficient and wear losses. A reduced Co ratio led to the formation of an oxide blend with a higher concentration of Mo and Cr oxides on the surface, further improving the coating's wear behavior. Graphical Abstract

Funder

Middle East Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3