Abstract
Hydrostatic actuation has gained interest from both academia and industry due to the unquestionable energetic advantages when compared to valve-controlled actuators; the main feature being the absence of throttling losses due to the direct control of the cylinder by the pump. However, the fact that the great majority of applications are based on single-rod cylinders has been both a challenge and a source of inspiration for a variety of different circuit designs. In an attempt to compensate for the uneven flows coming in and out of differential cylinders, several solutions have been proposed, including the use of hydraulic transformers, individual pumps connected to the cylinder ports or pumps with unmatched input and output flows. The simplest approach, however, seems to be the use of compensation valves in the circuit, which is the focus of this paper. Here, we analyse some representative circuits proposed along the years in a direct and elucidative manner, showing that the definitive solution to the single-rod actuator control problem has been established, paving the road for introducing stable and trustworthy circuits, which can be commercially used in the near future.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Control and Optimization,Control and Systems Engineering
Reference21 articles.
1. Hydraulic Control Systems;Merritt,1967
2. Using Industrial Hydraulics;Frankenfield,1984
3. A Design Solution for Efficient and Compact Electro-hydraulic Actuators
4. Hydrostatic Transmissions and Actuators—Operation, Modelling and Applications;Costa,2015
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献