A Robust Terrain Aided Navigation Using the Rao-Blackwellized Particle Filter Trained by Long Short-Term Memory Networks

Author:

Lee JungshinORCID,Bang Hyochoong

Abstract

Terrain-aided navigation (TAN) is a technology that estimates the position of the vehicle by comparing the altitude measured by an altimeter and height from the digital elevation model (DEM). The particle filter (PF)-based TAN has been commonly used to obtain stable real-time navigation solutions in cases where the unmanned aerial vehicle (UAV) operates at a high altitude. Even though TAN performs well on rough and unique terrains, its performance degrades in flat and repetitive terrains. In particular, in the case of PF-based TAN, there has been no verified technique for deciding its terrain validity. Therefore, this study designed a Rao-Blackwellized PF (RBPF)-based TAN, used long short-term memory (LSTM) networks to endure flat and repetitive terrains, and trained the noise covariances and measurement model of RBPF. LSTM is a modified recurrent neural network (RNN), which is an artificial neural network that recognizes patterns from time series data. Using this, this study tuned the noise covariances and measurement model of RBPF to minimize the navigation errors in various flight trajectories. This paper designed a TAN algorithm based on combining RBPF and LSTM and confirmed that it can enable a more precise navigation performance than conventional RBPF based TAN through simulations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3