Modified interactive multiple model particle filter for terrain referenced navigation with classification error minimisation strategy

Author:

Han Kyung Jun12ORCID,Park Chan Gook13

Affiliation:

1. Department of Mechanical and Aerospace Engineering Seoul National University Seoul Korea

2. The 1st R&D Institute Agency for Defense Development Daejeon Korea

3. Automation and System Research Institute Seoul National University Seoul Korea

Abstract

AbstractThe authors propose an innovative solution to address challenges in terrain‐referenced navigation (TRN). The suggested solution is the interactive multiple‐model particle filter with a classification error minimisation strategy (IMM‐CPF) based on decision theory. TRN is a technique that estimates position by comparing measured terrain altitude to the digital elevation model and critically depends on obtaining accurate altitude measurements. However, these measurements can be easily contaminated to not only from sensor errors but also from vegetation effects. The TRN measurement noise model is characterised as a multi‐modal density, and it reveals an overlap between two density functions, with the mixture weight parameter varying based on surface environmental conditions. This variability can potentially degrade estimation accuracy. The proposed approach integrates truncated likelihoods into the mode estimation process to enhance mode estimation capability using a classification error minimisation strategy. The proposed strategy is based on decision theory and has been modified to be suited in the IMMPF form. The effectiveness of the proposed IMM‐CPF method is verified through simulations conducted under diverse surface conditions, demonstrating significant improvements in estimation accuracy compared to conventional algorithms. Furthermore, the significance of this method is presented in terms of computational cost and robustness.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3