1. (2022, September 24). The Global Risks Report 2022. World Economic Forum. Available online: https://www.weforum.org/reports/global-risks-report-2022.
2. Dario, A., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016). Concrete problems in AI safety. arXiv.
3. A deep learning approach to network intrusion detection;Nathan;IEEE Trans. Emerg. Top. Comput. Intell.,2018
4. Jihyun, K., Kim, J., Thi Thu, H.L., and Kim, H. (2016, January 15–17). Long short term memory recurrent neural network classifier for intrusion detection. Proceedings of the 2016 International Conference on Platform Technology and Service (PlatCon), Jeju, Republic of Korea.
5. Fares, M., Zseby, T., and Iglesias, F. (2018). Analysis of lightweight feature vectors for attack detection in network traffic. Appl. Sci., 8.