Comprehensive Intrusion Detection and Classification Using Deep Learning Techniques With Preprocessing and Feature Extraction

Author:

Saranya R.1,Priscila S. Silvia1

Affiliation:

1. Bharath Institute of Higher Education and Research, India

Abstract

For efficient identification of intrusions, this paper suggests computing techniques like recurrent neural networks (RNN), k-nearest neighbors (KNN), and convolutional neural networks (CNN) for classifying and predicting intrusions. Min-max scalability is used in preprocessing to normalize mathematical properties and guarantee consistency at various degrees. Linear discriminant analysis (LDA) extracts characteristics to increase the capacity for raw information discrimination. In addition, an innovative fusion of LDA and Min-Max scalability is investigated to maximize the depiction of features. Using CNN with extracted and feature-extracted data, this investigation expands the analysis to use the spatial organization of the convolutional CNN layers record. The tool used is Jupyter Notebook, and the language used is Python. Experiments on an incursion dataset show that the suggested mix of CNN, LDA, and Min-Max scaling operates dependably better than any of the distinct approaches regarding accuracy, precision, and recall.

Publisher

IGI Global

Reference13 articles.

1. Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique.;R.Abedindisha;Cybersecurity,2022

2. . Anuradha, K., Nirmalasugirtharajini, S., & Bhuvaneswarivijivinod, T. (2020). TCP /SYN Flood of Denial of Service (DOS) Attack Using Simulation. Test Engineering & Management, vol.82, 1,p-14553–14558.

3. Ashiku Cihan, L. (2021). Network Intrusion Detection System using Deep Learning. Network Intrusion Detection System Using Deep Learning. Science, Procedia Computer Science, vol.185, no.1, p-239–247.

4. Network Intrusion Detection [Data set]. Conference;S.Bhosale;2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS),2018

5. A Deep Learning Approach for Network Intrusion Detection Using a Small Features Vector

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3