Abstract
Enormous heterogeneous sensory data are generated in the Internet of Things (IoT) for various applications. These big data are characterized by additional features related to IoT, including trustworthiness, timing and spatial features. This reveals more perspectives to consider while processing, posing vast challenges to traditional data fusion methods at different fusion levels for collection and analysis. In this paper, an IoT-based spatiotemporal data fusion (STDF) approach for low-level data in–data out fusion is proposed for real-time spatial IoT source aggregation. It grants optimum performance through leveraging traditional data fusion methods based on big data analytics while exclusively maintaining the data expiry, trustworthiness and spatial and temporal IoT data perspectives, in addition to the volume and velocity. It applies cluster sampling for data reduction upon data acquisition from all IoT sources. For each source, it utilizes a combination of k-means clustering for spatial analysis and Tiny AGgregation (TAG) for temporal aggregation to maintain spatiotemporal data fusion at the processing server. STDF is validated via a public IoT data stream simulator. The experiments examine diverse IoT processing challenges in different datasets, reducing the data size by 95% and decreasing the processing time by 80%, with an accuracy level up to 90% for the largest used dataset.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献