A spatiotemporal co-occurrence pattern mining algorithm based on ship trajectory data

Author:

Feng Chengxu1ORCID,Xu Jianghu1,Zhang Jianqiang1,Li Houpu2

Affiliation:

1. College of Weaponry Engineering, Naval University of Engineering, Wuhan, China

2. College of Electrical Engineering, Naval University of Engineering, Wuhan, China

Abstract

Finding the potential spatiotemporal co-occurrence behavior patterns of large groups of ships while sailing is a challenging problem of great importance in many real-world applications. Through spatiotemporal data mining of ship trajectory data, route rules, navigation behavior, and potential anomalies can be mined, providing important support for maritime management, navigation safety, and emergency response. With the analysis and mining of ship trajectory data in some hotspot sea areas, this paper introduced a ship spatiotemporal co-occurrence pattern mining algorithm based on association rules. Based on the research of data model and the judgment criterion of spatio-temporal co-occurrence law, such concepts as candidate set, frequency set, and instance set are introduced together with the key procedure of algorithm, including pruning and pasting of candidate sets, screening of instance sets, definition of association reasoning, and association rule mining. Subsequently, the process of implementing the spatiotemporal co-occurrence pattern mining algorithm is devised. In the end, the algorithm is verified by taking the automatic identification system data of ships in hotspot sea areas as the source data. The proposed algorithm can find several ship combinations with spatiotemporal co-occurrence regularity in these hotspot sea areas, and the association rules on the co-occurrence of several ships. The performance of the proposed algorithms is illustrated on a real-world ship trajectory database and made a detailed comparative analysis. The results are very promising in terms of computational time. The experimental results show that our algorithm can effectively identify the motion patterns and behavior characteristics of ships, which provides an important reference and support for Marine traffic management, ship safety and Marine environment protection. The research results of this paper are of great significance for improving the efficiency and safety of maritime traffic, and also provide new ideas and methods for further research in related fields.

Funder

Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China

Natural Science Foundation of Hubei Province of China

National Science Foundation for Outstanding Young Scholars

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3