DTS-Depth: Real-Time Single-Image Depth Estimation Using Depth-to-Space Image Construction

Author:

Ibrahem HatemORCID,Salem AhmedORCID,Kang Hyun-SooORCID

Abstract

As most of the recent high-resolution depth-estimation algorithms are computationally so expensive that they cannot work in real time, the common solution is using a low-resolution input image to reduce the computational complexity. We propose a different approach, an efficient and real-time convolutional neural network-based depth-estimation algorithm using a single high-resolution image as the input. The proposed method efficiently constructs a high-resolution depth map using a small encoding architecture and eliminates the need for a decoder, which is typically used in the encoder–decoder architectures employed for depth estimation. The proposed algorithm adopts a modified MobileNetV2 architecture, which is a lightweight architecture, to estimate the depth information through the depth-to-space image construction, which is generally employed in image super-resolution. As a result, it realizes fast frame processing and can predict a high-accuracy depth in real time. We train and test our method on the challenging KITTI, Cityscapes, and NYUV2 depth datasets. The proposed method achieves low relative absolute error (0.028 for KITTI, 0.167 for CITYSCAPES, and 0.069 for NYUV2) while working at speed reaching 48 frames per second on a GPU and 20 frames per second on a CPU for high-resolution test images. We compare our method with the state-of-the-art methods on depth estimation, showing that our method outperforms those methods. However, the architecture is less complex and works in real time.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. Depth map prediction from a single image using a multi-scale deep network;Eigen;Adv. Neural Inf. Process. Syst.,2014

2. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3