RT-ViT: Real-Time Monocular Depth Estimation Using Lightweight Vision Transformers

Author:

Ibrahem HatemORCID,Salem AhmedORCID,Kang Hyun-SooORCID

Abstract

The latest research in computer vision highlighted the effectiveness of the vision transformers (ViT) in performing several computer vision tasks; they can efficiently understand and process the image globally unlike the convolution which processes the image locally. ViTs outperform the convolutional neural networks in terms of accuracy in many computer vision tasks but the speed of ViTs is still an issue, due to the excessive use of the transformer layers that include many fully connected layers. Therefore, we propose a real-time ViT-based monocular depth estimation (depth estimation from single RGB image) method with encoder-decoder architectures for indoor and outdoor scenes. This main architecture of the proposed method consists of a vision transformer encoder and a convolutional neural network decoder. We started by training the base vision transformer (ViT-b16) with 12 transformer layers then we reduced the transformer layers to six layers, namely ViT-s16 (the Small ViT) and four layers, namely ViT-t16 (the Tiny ViT) to obtain real-time processing. We also try four different configurations of the CNN decoder network. The proposed architectures can learn the task of depth estimation efficiently and can produce more accurate depth predictions than the fully convolutional-based methods taking advantage of the multi-head self-attention module. We train the proposed encoder-decoder architecture end-to-end on the challenging NYU-depthV2 and CITYSCAPES benchmarks then we evaluate the trained models on the validation and test sets of the same benchmarks showing that it outperforms many state-of-the-art methods on depth estimation while performing the task in real-time (∼20 fps). We also present a fast 3D reconstruction (∼17 fps) experiment based on the depth estimated from our method which is considered a real-world application of our method.

Funder

National Research Foundation of Korea

Ministry of Science and ICT, Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3