Study of the Selectivity and Bioactivity of Polyphenols Using Infrared Assisted Extraction from Apricot Pomace Compared to Conventional Methods

Author:

Cheaib Dina,El Darra Nada,Rajha Hiba,El-Ghazzawi Iman,Mouneimne Youssef,Jammoul Adla,Maroun Richard,Louka Nicolas

Abstract

The valorization of industrial food byproducts by means of environment-friendly extraction methods is becoming a major interest because of its environmental and economic values. In this study, the efficiency of many technologies, such as ultrasounds (US), microwaves (MW), and infrared (IR), was compared, in terms of polyphenol yield and bioactivity from apricot pomace. IR was the most effective method with the highest polyphenol (10 mg GAE/g DM), flavonoid (6 mg CE/g DM), and tannin (3.6 mg/L) yields. In terms of efficacy, IR was followed by MW, US, then solid-liquid (S/L) extraction. IR extract from apricot pomace exhibited the highest inhibitory activity against all the studied gram-positive strains (Methicillin Resistant Staphylococcus aureus, Staphylococcus aureus, Methicillin-resistant Staphylococcus epidermidis, and Staphylococcus epidermidis) and a one gram-negative strain (Escherichia coli). Moreover, IR extracts had by far the highest antiradical activity (AC) (40%) followed by MW (31%), US (28%), and then S/L (15%). High-performance liquid chromatography (HPLC) permitted the identification and quantification of rutin in all extracts; whereas catechin was detected in those of IR (3.1 μg/g DM), MW (2.1 μg/g DM), and US (1.5 μg/g DM). Epicatechin was exclusively found in IR extract (4 μg/g DM), suggesting the selectivity of IR towards this compound. Scanning electron microscopy (SEM) revealed that the IR technique induced the highest cellular and structural damage in apricot pomace, which could explain the effectiveness of this technology.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3