Assessing the Impact of the Loss Function and Encoder Architecture for Fire Aerial Images Segmentation Using Deeplabv3+

Author:

Harkat HoudaORCID,Nascimento José,Bernardino AlexandreORCID,Thariq Ahmed Hasmath

Abstract

Wildfire early detection and prevention had become a priority. Detection using Internet of Things (IoT) sensors, however, is expensive in practical situations. The majority of present wildfire detection research focuses on segmentation and detection. The developed machine learning models deploy appropriate image processing techniques to enhance the detection outputs. As a result, the time necessary for data processing is drastically reduced, as the time required rises exponentially with the size of the captured pictures. In a real-time fire emergency, it is critical to notice the fire pixels and warn the firemen as soon as possible to handle the problem more quickly. The present study addresses the challenge mentioned above by implementing an on-site detection system that detects fire pixels in real-time in the given scenario. The proposed approach is accomplished using Deeplabv3+, a deep learning architecture that is an enhanced version of an existing model. However, present work fine-tuned the Deeplabv3 model through various experimental trials that have resulted in improved performance. Two public aerial datasets, the Corsican dataset and FLAME, and one private dataset, Firefront Gestosa, were used for experimental trials in this work with different backbones. To conclude, the selected model trained with ResNet-50 and Dice loss attains a global accuracy of 98.70%, a mean accuracy of 89.54%, a mean IoU 86.38%, a weighted IoU of 97.51%, and a mean BF score of 93.86%.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Global Forest Watchhttps://www.globalforestwatch.org/

2. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal

3. Elevation in wildfire frequencies with respect to the climate change

4. Wildfires and landscape dynamics in Portugal: A regional assessment and global implications;Rego,2014

5. Reassessing wildfire susceptibility and hazard for mainland Portugal

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3