A Novel Method to Estimate Multi-GNSS Differential Code Bias without Using Ionospheric Function Model and Global Ionosphere Map

Author:

Wang Qisheng,Jin ShuanggenORCID,Ye Xianfeng

Abstract

Global navigation satellite system (GNSS) differential code bias (DCB) is one of main errors in ionospheric modeling and applications. Accurate estimation of multiple types of GNSS DCBs is important for GNSS positioning, navigation, and timing, as well as ionospheric modeling. In this study, a novel method of multi-GNSS DCB estimation is proposed without using an ionospheric function model and global ionosphere map (GIM), namely independent GNSS DCB estimation (IGDE). Firstly, ionospheric observations are extracted based on the geometry-free combination of dual-frequency multi-GNSS code observations. Secondly, the VTEC of the station represented by the weighted mean VTEC value of the ionospheric pierce points (IPPs) at each epoch is estimated as a parameter together with the combined receiver and satellite DCBs (RSDCBs). Last, the estimated RSDCBs are used as new observations, whose weight is calculated from estimated covariances, and thus the satellite and receiver DCBs of multi-GNSS are estimated. Nineteen types of multi-GNSS satellite DCBs are estimated based on 200-day observations from more than 300 multi-GNSS experiment (MGEX) stations, and the performance of the proposed method is evaluated by comparing with MGEX products. The results show that the mean RMS value is 0.12, 0.23, 0.21, 0.13, and 0.11 ns for GPS, GLONASS, BDS, Galileo, and QZSS DCBs, respectively, with respect to MGEX products, and the stability of estimated GPS, GLONASS, BDS, Galileo, and QZSS DCBs is 0.07, 0.06, 0.13, 0.11, and 0.11 ns, respectively. The proposed method shows good performance of multi-GNSS DCB estimation in low-solar-activity periods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3