BDS-3 Triple-Frequency Timing Group Delay/Differential Code Bias and Its Effect on Positioning

Author:

Du Yanjun1ORCID,Yang Yuanxi23ORCID,Jia Xiaolin23,Yao Wanqiang1,Li Jiahao4,Li Qin1

Affiliation:

1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

2. State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China

3. Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China

4. College of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China

Abstract

BeiDou Global Navigation Satellite System (BDS-3) broadcasts multifrequency signals that offer more choices of frequencies and more signal combinations for positioning. This paper analyzes the effect of timing group delay (TGD) and differential code bias (DCB) of BDS-3 on the corresponding triple-frequency positioning. The triple-frequency observation models of BDS-3 are summarized and the DCB correction models are derived for the four different frequency combinations of triple-frequency ionospheric-free (IF) combination (IF123), two dual-frequency IF combinations (IF1213) and triple-frequency uncombined (UC123) positioning modes. Standard point positioning (SPP) and precise point positioning (PPP) experiments were conducted using 30 days of observations from 25 multi-GNSS experiment (MGEX) stations. The results show that the TGD/DCB correction has a significant impact on the accuracy of SPP. The positioning accuracy using IF123 and IF1213 models improved by about 73~90% after TGD correction, in comparison to a 27~30% improvement achieved using the UC123 model. In addition, the correction effect of DCB is slightly better than TGD. The DCB correction significantly improves accuracy in the initial epoch of the PPP, which helps the convergence of the filtering and reduces the convergence time. The average convergence times of IF123, IF1213 and UC123 are 26.1, 26.9 and 38.3 min, respectively, which are reduced by 6.79, 2.54 and 8.59% with DCB correction. The pseudorange residuals are closer to zero-mean random noise after DCB correction. Furthermore, the DCB affects the evaluation of the inter-frequency bias (IFB), ionospheric delay and floating ambiguity parameters. However, the tropospheric delay is almost unaffected by DCB.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3