Convective Entrainment Rate over the Tibetan Plateau and Its Adjacent Regions in the Boreal Summer Using SNPP-VIIRS

Author:

Li JunjunORCID,Yue Zhiguo,Lu Chunsong,Chen Jinghua,Wu Xiaoqing,Xu XiaoqiORCID,Luo Shi,Zhu Lei,Wu Shiying,Wang Fan,He Xin

Abstract

The entrainment rate (λ) is difficult to estimate, and its uncertainties cause a significant error in convection parameterization and precipitation simulation, especially over the Tibetan Plateau, where observations are scarce. The λ over the Tibetan Plateau, and its adjacent regions, is estimated for the first time using five-year satellite data and a reanalysis dataset. The λ and cloud base environmental relative humidity (RH) decrease with an increase in terrain height. Quantitatively, the correlation between λ and RH changes from positive at low terrain heights to negative at high terrain heights, and the underlying mechanisms are here interpreted. When the terrain height is below 1 km, large RH decreases the difference in moist static energy (MSE) between the clouds and the environment and increases λ. When the terrain height is above 1 km, the correlation between λ and RH is related to the difference between MSE turning point and cloud base, because of decreases in specific humidity near the surface with increasing terrain height. These results enhance the theoretical understanding of the factors affecting λ and pave the way for improving the parameterization of λ.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3