Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF

Author:

Lu XuORCID,Davis BenjaminORCID,Wang Xuguang

Abstract

The initial conditions for hurricanes are difficult to improve due to the lack of inner-core observations over the ocean. An enhanced atmospheric motion vectors (AMVs) dataset from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) has recently become available and covers the inner-core region of hurricanes. This study tries to find an optimal data assimilation (DA) configuration to better utilize the observations for the Hurricane Weather Research and Forecasting (HWRF) model with hurricane Irma (2017). The results show that (a) without vortex relocation (VR), the hourly three-dimensional ensemble–variational (3DEnVar) outperforms the 6-hourly 3DEnVar DA configuration in almost all aspects, except for long-term track predictions. The assimilation of inner-core AMVs further improves the corresponding intensity forecasts for both hourly and 6-hourly 3DEnVar DA. (b) The 6-hourly 3DEnVar DA predictions with VR can be significantly improved upon their non-VR counterparts. However, VR can be detrimental to hourly 3DEnVar minimum sea level pressure (MSLP) predictions due to the spuriously enhanced upper-level warm core. The improvements from the assimilation of additional inner-core AMVs are thus limited under hourly VR. Reducing VR frequency can reduce the detrimental effects of hourly 3DEnVar. (c) An updated observation error profile for the enhanced AMVs benefits the hourly 3DEnVar DA more than the 6-hourly 3DEnVar DA.

Funder

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3