Predicting rapid intensification of tropical cyclones in the western North Pacific: a machine learning and net energy gain rate approach

Author:

Kim Sung-Hun,Lee Woojeong,Kang Hyoun-Woo,Kang Sok Kuh

Abstract

In this study, a machine learning (ML)-based Tropical Cyclones (TCs) Rapid Intensification (RI) prediction model has been developed by using the Net Energy Gain Rate Index (NGR). This index realistically captures the energy exchanges between the ocean and the atmosphere during the intensification of TCs. It does so by incorporating the thermal conditions of the upper ocean and using an accurate parameterization for sea surface roughness. To evaluate the effectiveness of NGR in enhancing prediction accuracy, five distinct ML algorithms were utilized: Decision Tree, Logistic Regression, Support Vector Machine, K-Nearest Neighbors, and Feed-forward Neural Network. Two sets of experiments were performed for each algorithm. The first set used only traditional predictors, while the second set incorporated NGR. The outcomes revealed that models trained with the inclusion of NGR exhibited superior performance compared to those that only used traditional predictors. Additionally, an ensemble model was developed by utilizing a hard-voting method, combining the predictions of all five individual algorithms. This ensemble approach showed a noteworthy improvement of approximately 10% in the skill score of RI prediction when NGR was included. The findings of this study emphasize the potential of NGR in refining TC intensity prediction and underline the effectiveness of ensemble ML models in RI event detection.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3